2009年5月14日星期四

Oracle三种常用Join

The three most commonly used joins are Indexed Nested Loops, Hash Join, and Sort-Merge Join.

Indexed Nested Loops

The Nested Loop join is an iterative join: for each row in the first (inner) row source, lookup matching rows in the second (outer) row source. If the nested lookup of the second row source performs a Unique or Range Index Scan, then we call this Indexed Nested Loops.

Indexed Nested Loops is used primarily in low volume joins; it is efficient over small volumes and versatile enough to be used in a variety of situations. Although it is fully scalable, Indexed Nested Loops is inefficient over large data volumes.

Hash Join

The hash join is used for high-volume equi-joins (joins with equals predicates). Oracle performs a single read of the smaller row source (call this T1) and builds a hash table in memory. The join key is used as the hash-key of the hash table. Then a single pass of the larger row source (call this T2) is performed, hashing the join key of each row to obtain an address in the hash table where it will find matching T1 rows.

Provided T1 remains small enough to build the hash table in memory, T2 can be scaled up to any arbitrarily large volume without affecting throughput or exceeding temp space. If T1 cannot be hashed in memory, then a portion of the hash-table spills to disk. When the hash table is probed by T2, the rows with join keys that match those parts of the in-memory hash table are joined immediately; the rest are written to TEMP and joined in a second pass. The bigger T1 is, the smaller the proportion of the hash table that can fit in memory, and the larger the proportion of T2 that must be scanned twice. This slows the Hash Join down considerably and also makes the join non-scalable.

Sort-Merge

A sort-merge join works by reading each row-source in the join separately; sorting both sets of results on the join column(s); then concurrently working through the two lists, joining the rows with matching keys. Sort-Merge is generally faster than Indexed Nested Loops but slower than Hash Join for equi-joins. It is used almost exclusively for non-equi joins (>, <, BETWEEN) and will occasionally be used when one of the row sources is pre-sorted (eg. a GROUP BY inline view)

If both row sources are small then they may both be sorted in memory, however large sorts will spill to disk making then non-scalable.

There is no way to make a Sort-Merge join scalable. The only other way to resolve a non-equijoin is to use Nested Loops, which is slower. As volumes increase, Sort-Merge will continue to out-perform Nested Loops, but will eventually run out of Temp space. The only solution is to extend TEMP, or convert the join to Nested Loops (and then wait).